Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            null (Ed.)Recent years have seen a proliferation of ML frameworks. Such systems make ML accessible to non-experts, especially when combined with powerful parameter tuning and AutoML techniques. Modern, applied ML extends beyond direct learning on clean data, however, and needs an expressive language for the construction of complex ML workflows beyond simple pre- and post-processing. We present mlr3pipelines, an R framework which can be used to define linear and complex non-linear ML workflows as directed acyclic graphs. The framework is part of the mlr3 ecosystem, leveraging convenient resampling, benchmarking, and tuning components.more » « less
- 
            Smartphones enjoy high adoption rates around the globe. Rarely more than an arm’s length away, these sensor-rich devices can easily be repurposed to collect rich and extensive records of their users’ behaviors (e.g., location, communication, media consumption), posing serious threats to individual privacy. Here we examine the extent to which individuals’ Big Five personality dimensions can be predicted on the basis of six different classes of behavioral information collected via sensor and log data harvested from smartphones. Taking a machine-learning approach, we predict personality at broad domain ( r median = 0.37) and narrow facet levels ( r median = 0.40) based on behavioral data collected from 624 volunteers over 30 consecutive days (25,347,089 logging events). Our cross-validated results reveal that specific patterns in behaviors in the domains of 1) communication and social behavior, 2) music consumption, 3) app usage, 4) mobility, 5) overall phone activity, and 6) day- and night-time activity are distinctively predictive of the Big Five personality traits. The accuracy of these predictions is similar to that found for predictions based on digital footprints from social media platforms and demonstrates the possibility of obtaining information about individuals’ private traits from behavioral patterns passively collected from their smartphones. Overall, our results point to both the benefits (e.g., in research settings) and dangers (e.g., privacy implications, psychological targeting) presented by the widespread collection and modeling of behavioral data obtained from smartphones.more » « less
- 
            Abstract Machine learning (ML) provides a powerful framework for the analysis of high‐dimensional datasets by modelling complex relationships, often encountered in modern data with many variables, cases and potentially non‐linear effects. The impact of ML methods on research and practical applications in the educational sciences is still limited, but continuously grows, as larger and more complex datasets become available through massive open online courses (MOOCs) and large‐scale investigations. The educational sciences are at a crucial pivot point, because of the anticipated impact ML methods hold for the field. To provide educational researchers with an elaborate introduction to the topic, we provide an instructional summary of the opportunities and challenges of ML for the educational sciences, show how a look at related disciplines can help learning from their experiences, and argue for a philosophical shift in model evaluation. We demonstrate how the overall quality of data analysis in educational research can benefit from these methods and show how ML can play a decisive role in the validation of empirical models. Specifically, we (1) provide an overview of the types of data suitable for ML and (2) give practical advice for the application of ML methods. In each section, we provide analytical examples and reproducible R code. Also, we provide an extensive Appendix on ML‐based applications for education. This instructional summary will help educational scientists and practitioners to prepare for the promises and threats that come with the shift towards digitisation and large‐scale assessment in education. Context and implicationsRationale for this studyIn 2020, the worldwide SARS‐COV‐2 pandemic forced the educational sciences to perform a rapid paradigm shift with classrooms going online around the world—a hardly novel but now strongly catalysed development. In the context of data‐driven education, this paper demonstrates that the widespread adoption of machine learning techniques is central for the educational sciences and shows how these methods will become crucial tools in the collection and analysis of data and in concrete educational applications. Helping to leverage the opportunities and to avoid the common pitfalls of machine learning, this paper provides educators with the theoretical, conceptual and practical essentials.Why the new findings matterThe process of teaching and learning is complex, multifaceted and dynamic. This paper contributes a seminal resource to highlight the digitisation of the educational sciences by demonstrating how new machine learning methods can be effectively and reliably used in research, education and practical application.Implications for educational researchers and policy makersThe progressing digitisation of societies around the globe and the impact of the SARS‐COV‐2 pandemic have highlighted the vulnerabilities and shortcomings of educational systems. These developments have shown the necessity to provide effective educational processes that can support sometimes overwhelmed teachers to digitally impart knowledge on the plan of many governments and policy makers. Educational scientists, corporate partners and stakeholders can make use of machine learning techniques to develop advanced, scalable educational processes that account for individual needs of learners and that can complement and support existing learning infrastructure. The proper use of machine learning methods can contribute essential applications to the educational sciences, such as (semi‐)automated assessments, algorithmic‐grading, personalised feedback and adaptive learning approaches. However, these promises are strongly tied to an at least basic understanding of the concepts of machine learning and a degree of data literacy, which has to become the standard in education and the educational sciences.Demonstrating both the promises and the challenges that are inherent to the collection and the analysis of large educational data with machine learning, this paper covers the essential topics that their application requires and provides easy‐to‐follow resources and code to facilitate the process of adoption.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available